
Employing Grid Computing Strategies in Cloud 
Computing 

 
Amit Batra#, Rajender Kumar*, Arvind Kumar# 

#CSE Department,  
H.C.T.M Kaithal India 

 
* H.C.T.M Kaithal India 

 
Abstract— The fields of Grid, Utility and Cloud Computing 
have a set of common objectives in harnessing shared 
resources to optimally meet a great variety of demands cost-
effectively and in a timely manner Since Grid Computing   
started its technological journey about a decade earlier than 
Cloud Computing, the Cloud can benefit from the technologies 
and experience of the Grid in building an infrastructure for 
distributed computing. Our comparison of Grid and Cloud 
starts with their basic characteristics and interaction models 
with clients, resource consumers and providers. Then the 
similarities and differences in  architectural layers and key 
usage patterns are examined. This is followed by an in depth 
look at the technologies and best practices that have 
applicability from Grid to Cloud computing, including 
scheduling, service orientation, security, data management, 
monitoring, interoperability, simulation and autonomic 
support. Finally, we offer insights on how these 
techniques will help solve the current challenges faced by 
Cloud computing. 
Keywords— Cloud, Grid, Web Service Resource Framework 
(WSRF), Largest Job First (LJF) , Smallest Cumulative 
Demand First (SCDF).  
 

I. INTRODUCTION 
Additional progress in high speed, low latency 
interconnects, has allowed building large-scale local 
clusters for distributed computing, and the extension to 
wide-area collaborating clusters in the Grid. Now, the 
recent availability of hardware support for platform 
virtualization on commodity machines provides a key 
enabler for Cloud based computing. Software models move 
in lockstep to match advances in hard-ware. There is a 
considerable practical experience implementing distributed 
computing solutions and in supporting parallel 
programming models on clusters. These models now work 
to leverage the concurrency provided by multi-core and 
multi-systems. Additionally, there are two other areas of 
software evolution that are moving quickly to support the 
Cloud paradigm: one is the improving maturity and 
capability of software to manage virtual machines, and the 
other is the migration from a monolithic approach  in 
constructing software solutions to a service approach in 
which complex processes are composed of loosely coupled 
components. These latest steps in the evolution of hardware 
and software models have led to Grid and Cloud 
Computing as paradigms that reduce the cost of software 
solutions.  Since Grid Computing started its technological 
journey about a decade earlier than Cloud Computing, are 
there lessons to learn and technologies to leverage from 
Grid to Cloud? In this chapter, we would like to explore the 
experiences learnt in Grid and the role of Grid technologies 
for Cloud computing. 
 

II  BASICS OF GRID AND CLOUD COMPUTING 
1. Basics of Grid Computing 
Grid Computing harnesses distributed resources from 
various institutions (resource providers), to meet the 
demands of clients consuming them. Resources from 
different providers are likely to be diverse and 
heterogeneous in their functions (computing, storage, 
software, etc.), hardware architectures (Intel x86, IBM 
PowerPC, etc.), and usage policies set by owning 
institutions. Developed under the umbrella of Grid  
Computing, information services, name services, and 
resource brokering services are important technologies 
responsible for the aggregation of resource information and 
availability, selection of resources to meet the clients’ 
specific requirements and the quality of services criteria 
while adhering to the resource usage policies. Figure 1 
shows an exemplary relationship of resource providers and 
consumers for a collaborative Grid computing scenario. 
Clients or users submit their requests for application 
execution along with resource requirements from their 
home domains. A Resource broker selects a domain with 
appropriate resources to acquire from and to execute the 
application or route the application to domain for execution 
with results and status returning to the home domain. 
 

 
 

Figure 1. Grid collaborating domains 
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2. Basics of Cloud Computing 
IDC defined two specific aspects of Clouds: Cloud Services 
and Cloud Computing. Cloud Services are “consumer and 
business products, services and solutions that are delivered 
and consumed in real-time over the Internet” while Cloud 
Computing is “an emerging IT development, deployment 
and delivery model, enabling real-time delivery of products, 
services and solutions over the Internet (i.e., enabling Cloud 
services)”.  
In this paper, we will focus the computing infrastructure 
and platform aspects of the Cloud.  Amazon’s Elastic 
Compute Cloud popularized the Cloud computing model by 
providing an on-demand provisioning of virtualized 
computational resources as metered services to clients or 
users. While not restricted, most of the clients are 
individual users that acquire necessary resources for their 
own usage through EC2’s APIs without cross organization 
agreements or contracts. Figure 2  illustrates possible usage 
models from clients C1 and C2 for resources/services of 
Cloud providers. As Cloud models evolve, many are 
developing the hybrid Cloud model in which enterprise 
resource brokers may acquire additional needed resources 
from external Cloud providers to meet the demands of 
submitted enterprise workloads (E1) and client work 
requests (E2). Moreover, the enterprise resource domain 
and Cloud providers may all belong to one corporation and 
thus form a private Cloud model. 
 

 
 

Figure 2 Cloud Usage Models 
 

III. INTERACTION MODELS OF GRID AND CLOUD 

COMPUTING 
One of the most scalable interaction models of Grid 
domains is peer-to-peer, where most of the Grid 
participating organizations are both consumers and 
providers. In practice, there are usually agreements of 
resource sharing among the peers.  

Furthermore, clients of consumer organizations in Grids use 
heterogeneous resources from more than one resource 
provider belonging to the same Virtual Organization (VO) 
to execute their applications. It is important for 
participating resource providers and consumers to have 
common information models, interaction protocols, 
application execution states, etc. The organization of Open 
Grid Forum 
(OGF) has the goal of establishing relevant and necessary 
standards for Grid computing. Some proposed standards 
include Job Submission Description Language (JSDL), 
Basic Execution Service (BES) and others. Currently, most 
of the Cloud providers offer their own proprietary service 
protocols and information formats. As Cloud computing 
becomes mature and widely adopted, clients and consumer 
organizations would likely interact with more than one 
provider for various reasons, including finding the most 
cost effective solutions or acquiring a variety of services 
from different providers (e.g., compute providers or data 
providers). Cloud consumers will likely demand common 
protocols and standardized information formats for ease of 
federated usage and interoperability. The Open 
Virtualization format (OVF) of the Distributed 
Management Task Force (DMTF) is an exemplary proposal 
in this direction. Modeled after similar formations in the 
Grid community, OGF officially launched a workgroup, 
named the Open Cloud Computing Interface Working 
Group (OCCI-WG) to develop the necessary common APIs 
for the lifecycle management of Cloud infrastructure 
services. More standardization activities related to Cloud 
can be found in the wiki of Cloud-Standards.org. 
 
1. Distributed Computing in the Grid and Cloud 
The Grid encompasses two areas of distributed system 
activity. One is operational with an objective of 
administrating and managing an interoperable collection of 
distributed compute resource clusters on which to execute 
client jobs, typically scientific/ HPC applications. The 
procedures and protocols required to support clients from 
complex services built on distributed components that 
handle job submission,security, machine provisioning, and 
data staging. The Cloud has similar operational 
requirements for supporting complex services to provide 
clients with services on different levels of support such 
application, platform and infrastructure. The Grid also 
represents as a coherent entity a collection of compute 
resources that may be under different administrative 
domains, such as universities, but inter-operate 
transparently to form virtual organizations. Although 
interoperability is not a near term priority, there is a 
precedent for commercial  Clouds to move in this direction 
similarly to how utilities such as power or communication 
contract with their competitors to provide overflow 
capacity. The second aspect of distributed computing in the 
Grid is that job themselves are distributed, typically running 
on tightly coupled nodes within a cluster and leveraging 
middleware services such as MPICH. Jobs running in the 
Grid are not typically interactive, and some may be part of 
more complex services such as e-science workflows. 
Workloads in Clouds usually consist of more loosely 
coupled distributed jobs such as map/reduce, and HPC jobs 
written to minimize internode communication and leverage 
concurrency provided by large multi-core nodes. Service 
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instances that form components of a larger business process 
workflow are likely to be deployed in the Cloud. These 
workload aspects of jobs running in the Cloud or Grid have 
implications for structuring the services that administer and 
manage the quality of their execution. 
2.  Layered Models and Usage patterns in Grid 
and Cloud 
There are many similarities in Grid and Cloud computing 
systems. We compare the approaches by differentiating 
three layers of abstraction in Grid: Infrastructure, Platform 
and Application. Then we map these three layers to the 
Cloud services of IaaS, PaaS, and SaaS. An example of the 
relations among layers can be seen in Fig. 3. 
2.1 Infrastructure 
This is the layer in which Clouds share most characteristics 
with the original purpose of Grid middleware. Some 
examples are Eucalyptus (Nurmi et al., 2009), OpenNebula, 
or Amazon EC2. In these systems users can provision 
execution environments in the form of virtual machines 
through interfaces such as APIs or command line tools. The 
act of defining an execution environment and sending a 
request to the final resource has many similarities with 
scheduling a job in the Grid. The main steps, shared by all 
of the cited Cloud environments are discussed below. We 
use Globus as the reference Grid technology.  The user 
needs to be authorized to use the system. In Grid systems 
this is managed through the Community Authorization 
System (CAS) or by contacting a Certificate Authority that 
is trusted by the target institution, which issues a valid 
certificate. Clouds usually offer web forms to allow the 
registration of new users, and have additional web 
applications to maintain databases of customers and 
generate credentials, such as the case of Eucalyptus or 
Amazon.  Once the user has a means of authenticating he 
needs to contact a gateway that can validate him and 
process his request. Different mechanisms are employed to 
carry users’ requests, but Web Services are the most 
common of them. Users either write a custom program that 
consumes the WS offered by providers, or use available 
tools. Examples include the Amazon API tools for Amazon 
EC2, the euca2ools for Eucalyptus or the OpenNebula 
command line interface. Similarly, Globus offers a set of 

 
Figure. 3.  Grid and Cloud Layers 

console-based scripts that facilitate communication with the 
Grid. • As part of the request for resource usage, users need 
to specify the action or task to be executed on the 
destination resources. Several formats are available for this 
purpose. Globus supports a Resource Specification 
Language (RSL) and a Job Submission Description 
Language (JSDL) that can define what process is to be run 
on the target machine, as well as additional constraints that 
can be used by a matchmaking component to restrict the 
class of resources to be considered, based on machine 
architecture, processor speed, amount of memory, etc. 
Alternatively, Clouds require different attributes such as the 
size of the execution environment or the virtual machine 
image to be used.  After the job execution or the 
environment creation requests are received, there is a 
match-making and scheduling phase involved. The GRAM 
component from Globus is specially flexible in this regard, 
and multiple adapters allow different treatments for jobs: 
for example, the simplest job manager just performs a fork 
call to spawn a new process on the target machine. More 
advanced and widely used adapters transfer job execution 
responsibility to a local resource manager such as Condor, 
LoadLeveler or Sun Grid Engine. These systems are able of 
multiplexing jobs that are sent to a site into multiple 
resources. Cloud systems have simpler job management 
strategies, since the type of jobs are homogeneous and don’t 
need to be adapted to a variety of resources such as in the 
case of the Grid. For example, Eucalyptus uses a Round 
Robin scheduling technique to alternate among machines. 
OpenNebula implements a Rank Scheduling Policy to 
choose the most adequate resource for a request, and 
supports more advance features such as advance 
reservations through Haizea (Sotomayor, Keahey, & Foster, 
2008).  One of the common phases involved in job 
submission is transferring the necessary data to and from 
the execution machine. The first of them, usually called 
stage-in, involves retrieving the input data for the process 
from a remote destination, such a GridFTP server. When 
the amount of data is large, a mapping service such as a 
Replica Location Service (RLS) can be used to translate a 
logical file name to a location. The second part of the 
process, stage-out, consists in either transferring the output 
data to the user’s machine or to place it in a repository, 
possibly using the RLS. In the case of Cloud computing, the 
most important data that has to be transferred is the 
definition of an execution environment, usually in terms of 
Virtual Machine images. Users upload the data describing 
the operating system and packages needed to instantiate the 
VM and later reference it to perform operations such as 
booting a new machine. There is no standard method for 
transferring data in Cloud systems, but it is worth noting 
Amazon’s object storage solution, the Simple Storage 
Service (S3), which allows users to move entities from 1 
byte to 5 GB in size.  Finally, Grid and Cloud systems need 
to offer users a method to monitor their jobs, as well as 
their resource usage.  This facility can also be used by site 
administrators to  implement usage accounting in order to 
track resource utilization and enforce user quotas. In the 
context of Globus, there are two modules that can be used 
for this purpose, the first is GRAM itself, which allows user 
to query previously submitted jobs’ status. The second 
method of acquiring information about the Grid’s resources 
is provided by the Monitoring and Discovery Service 
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(MDS), which is in charge of aggregating resources’ data 
and making it available to be queried. High-level 
monitoring tools have been developed on top of existing 
Cloud management systems such as Amazon Cloud Watch. 
2.2 Platform 
This layer is built on top of the physical infrastructure and 
offers a higher level of abstraction to users. The interface 
provided by a PaaS solution allows developers to build 
additional services without being exposed to the underlying 
physical or virtual resources. These facts enable additional 
features to be implemented as part of the model, such as 
presenting seemingly infinite resources to the user or 
allowing 
elastic behavior on demand. Examples of Cloud solutions 
that present these features are Google App Engine, 
Salesforce’s force.com or Microsoft Azure. Several 
solutions that can be compared to the mentioned PaaS 
offerings exist in the Grid, even though this exact model 
cannot be exactly replicated. We define Platform level 
solutions as those containing the  following two aspects: 
2.2.1 Abstraction from Physical Resources 
The Infrastructure layer provides users with direct access to 

the underlying infrastructure. While this is required for 
the lower levels of resource interaction, in the Platform 
level a user should be isolated from them. This allows 
developers to create new software that is not susceptible 
to the number of provisioned machines or their network 
configuration, for example. 

2.2.2 Programming API to Support New Services 
The Platform layer allows developers to build new software 

that takes advantage of the available resources. The 
choice of API directly influences the programs that can 
be built on the Cloud, therefore each PaaS solution is 
usually designed with a type  of application in mind. 
With these characteristics Grid systems allow developers 
to produce new software that take advantage of the 
shared resources in order to compare them with PaaS 
solutions.  

 
IV  APPLICATIONS 

 
There is no clear distinctions between applications 
developed on Grids and those that use Clouds to perform 
execution and storage. The choice of platform should not 
influence the final result, since the computations delegated 
to the underlying systems can take different shapes to 
accommodate to the available APIs and resources. On the 
other hand, it is undeniable that the vast majority of Grid 
applications fall in the realm of scientific software, while 
software running in Clouds has leaned towards commercial 
workloads. Here we try to identify some possible causes for 
the different levels of adoption of these technologies for the 
development of applications: 
• Lack of business opportunities in Grids. Usually Grid 

middleware is installed only in hardware intended for 
scientific usage. This phenomenon has not successfully 

       produced business opportunities that could be exploited 
by industry. Conversely, Clouds are usually backed up 
by industry which have had better ways to monetize 
their investments. 

• Complexity of Grid tools. Perhaps due to the goal of 
providing a standardized, one-size-fits-all solution, 
Grid middleware is perceived by many as complex and 

       difficult to install and manage. On the other hand, 
Cloud infrastructures have usually been developed by 
providers to fit their organization’s needs and with a 
concrete purpose in mind, making them easier to use 
and solution oriented. 

• Affinity with target software. Most Grid software is 
developed with scientific applications in mind, which is 
not true for the majority of Cloud systems. Scientific 
programs need to get the most performance from 
execution resourcesand many of them cannot be run on 
Clouds efficiently, for example because of  
virtualization overhead. Clouds are more targeted to 
web applications. These different affinities to distinct 
paradigms make both solutions specially effective for 
their target applications.  

 
V TECHNIQUES 

 
Here we discuss the impact of techniques used in Grid 
computing that can be applied in Clouds. From the time the 
concept of Grid was introduced, a variety of problems had 
to be solved in order to enable its wide adoption. Some 
examples of these are user interfacing , data transfer, 
resource  monitoring  or security . These basic techniques 
for the enablement of Grids were designed to fulfill its main 
goals, namely, to allow the sharing of heterogeneous 
resources  among individuals belonging to remote 
administrative domains. These goals determine the areas of 
application of the described techniques in Clouds, therefore 
we will find the most valuable set of improvements to be in 
the field of Cloud interoperability. 
 
1.  Service Orientation and Web Services 
The Cloud is both a provider of services (e.g. IaaS, PaaS, 
and SaaS) and a place to host services on behalf of clients. 
To implement the former operational aspects while 
maintaining flexibility, Cloud administrative functions 
should be constructed from software components. The Grid 
faced similar challenges in building a distributed 
infrastructure to support and evolve its administrative 
functions such as security, job submission, and creation of 
Virtual Organizations. The architectural principle adopted 
by the Grid is Service Orientation (SO) with software 
components  connected by Web Services (WS). This 
section summarizes contributions of the Open Grid Forum 
(OGF) to SO in distributed computing and and how they 
apply to the Cloud. SO as an architecture, and Web 
Services as a mechanism of inter-component 
communication are explored here in the context of 
similarities between Grid and Cloud requirements. 
Grid designers realized the advantage of the loosely-
coupled client and service model being appropriately 
deployed in the distributed computing environments. The 
original Grid approach to SO was Open Grid Services 
Infrastructure (OGSI). OGSI was built on top of the 
emerging Web Services standards for expressing interfaces 
between components in a language neutral way based on 
XML schemas.While WS is an interface, OGSI attempted 
to make it object oriented by adding required methods. 
Subsequently, the Grid community worked within the WS 
standards to extend WS specification based on experience 
using a SOA. This lead to the  introduction of Open Grid 
Services Architecture (OGSA), implemented in version 3 of 
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the Globus toolkit. OGSA contains key extensions to the 
WS standard which are now described. In Grid and Cloud 
the most typical service components such as provisioning 
an OS image, starting a virtual machine, or dispatching a 
job are long running. A service composition of these 
components requires an asynchronous programming model. 
A consumer service component invokes a WS provider and 
is immediately acknowledged so the caller does not hold his 
process open on a communication link. The provider 
component  asynchronously updates the consumer as the 
state changes. Grid architects recognized the importance of 
supporting the asynchronous model and integrated this 
approach into Web Services through the WS-Addressing 
and WS-Notify extensions. WS-Addressing specifies how to 
reference not just service endpoints, but objects within the 
service endpoint. Notification is based on WS-Addressing 
which specifies the component to be notified on a state 
change. Related to the long lived service operation and 
asynchronous communication model is the requirement to 
maintain and share state  information. There are many ways 
to achieve statefulness, none simple, especially when 
multiple services can update the same state object. In 
principle, a WS interface is stateless although of course 
there are many ways to build applications on top of WS that 
pass state through the operation messages. The challenge is 
to integrate the WS specification with a standard for 
statefulness that does not disturb the stateless intent of WS 
interface model. The OGF achieved this goal, developing 
the Web Service Resource Framework (WSRF). WSRF 
allows factory methods in the WS implementation to create 
objects, which are referenced remotely using the WS-
Addressing standard. Persistent resource properties are 
exposed to coupled services through XML. Introducing 
state potentially adds enormous complexity to a distributed 
system, and the distribution of stateful data to multiple 
service components has the potential for data coherence 
problems which would require distributed locking 
mechanisms. The approach introduced by the Grid passes 
WS endpoints to the resources so that synchronized access 
is provided by the service implementation. One path to 
leveraging Grid technology experiences in the Cloud is to 
consider building operation support services with a SO. The 
component services interconnect using the suite of WS 
standards. The logic of composing the services is built with 
modern business process design tools which produce a 
workflow. The design workflow is exported in the form 
such as the Business Process Execution Language (BPEL) 
and executed by a workflow engine. This implementation 
path of using BPEL with WSRF to build a SOA has been 
demonstrated in an e-Science context (Ezenwoye & 
Sadjadi, 2010; Ezenwoye, Sadjadi, Carey, & Robinson, 
2007). There is already some experience using WS and 
WSRF in the Cloud domain. The Nimbus project uses the 
WS and WSRF model as an interface for clients to access 
its Cloud workspaces. 
2.  Data Management 
In Grid computing, data-intensive applications such as the 
scientific software in domains like high energy physics, 
bio-informatics, astronomy or earth sciences involve large 
amounts of data. The Globus Toolkit provides multiple data 
management solutions including GridFTP, the Global 
Access to Secondary Storage (GASS), the Reliable File 
Transfer (RFT), the Replica Location Service (RLS) and a 

higher-level Data Replication Service (DRS) based on RFT 
and RLS. Specifically, GASS is a lightweight data access 
mechanism for remote storage systems. It enables pre-
staging and post-staging of files and is integrated into the 
Globus Resource Access and Monitoring (GRAM) to stage 
in executables and input data and if necessary, stage out the 
output data and logs. 
In the current state of Cloud computing, storage is usually 
close to computation and therefore data management is 
simpler than in Grids, where the pool of execution and 
storage resources is considerably larger and therefore 
efficient and scalable methods are required for placement of 
jobs and data location and transfer. Still, there is the need to 
take data access into consideration to provide better 
application performance. 
An example of this is Hadoop, which schedules 
computation close to data to reduce transfer delays. Same as 
Grid  computing, Clouds need to provide scalable and 
efficient techniques for transferring data. For example, we 
may need to move virtual machine images, which are used 
to instantiate execution environments in Clouds, from users 
to a repository and from the repository to hosting machines. 
Techniques for improved transfer rates such as GridFTP 
would result in lower times for sites that have high 
bandwidth, since they can optimize data transfer by 
parallelizing the sending streams. Also, catalog services 
could be leveraged to improve distributed information 
sharing among multiple participants such that the locating 
of user data and data repositories is more efficient. The 
standards developed from Grid computing practice can be 
leveraged to improve interoperability of multiple Clouds. 
Finally, better integration of data  management with the 
security infrastructure would enable groups of trusted users. 
An application of this principle could be used in systems 
such as Amazon EC2 where VM images are shared by 
individuals with no assurances about their provenance. 
3.  Monitoring 
Although some Cloud monitoring tools have already been 
developed, they provide high level information and, in most 
cases, the monitoring functionality is embedded in the 
VMmanagement system following specific mechanisms 
and models. The current challenge for Cloud monitoring 
tools is providing information from the Clouds and 
application/service requests with sufficient level of detail in 
nearly real time in order to take effective decisions rather 
than providing a simple and graphical representation of the 
Cloud status. To do this, different Grid monitoring 
technologies can be applied to Clouds, specially those of 
them that are capable to provide monitoring data in 
aggregate form due to the large scale and dynamic behavior 
of Clouds. Several data centers that provide resources to 
Cloud systems have adopted Ganglia as a monitoring tool. 
However, virtualized environments have more specific 
needs that have motivated Cloud computing technology 
providers to develop their own monitoring system. Some of 
them are summarized below: 
Amazon CloudWatch is a web service that provides 
monitoring for Amazon Web Services Cloud resources such 
as Amazon EC2. It collects raw data from Amazon Web 
Services and then processes the information into readable 
metrics that are recorded for a period of two weeks. It 
provides the users with visibility into resource utilization, 
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operational performance, and overall demand patterns - 
including metrics such as CPU utilization, disk reads and 
writes, and network traffic.  
Windows Azure Diagnostic Monitor collects data in local 
storage for every diagnostic type that is enabled and can 
transfer the data it gathers to an Azure Storage account for 
permanent storage. It can be scheduled to push the collected 
data to storage at regular intervals or it can be requested an 
on-demand transfer whenever this information is required. 
The OpenNebula Information Manager (IM) is in charge 
of monitoring the different nodes in a Cloud. It comes with 
various sensors, each one responsible for different aspects 
of the compute resource to be monitored (CPU, memory, 
hostname). Also, there are sensors prepared to gather 
information from different hypervisors. The monitoring 
functionality of Aneka (Vecchiola, Chu, & Buyya, 2009) 
is implemented by the core middleware, which provides a 
wide set of services including also negotiation of the quality 
of service, admission control, execution management, 
accounting and billing. To help administrators to tune the 
overall performance of the Cloud, the Management Studio 
provides aggregated dynamic statistics. 
Nimsoft Monitoring Solution (NMS), built on the Nimsoft 
Unified Monitoring Architecture, delivers monitoring 
functionality to any combination of virtualized data center, 
on hosted or managed infrastructure, in the Cloud on IaaS 
or PaaS or delivered as SaaS services. Specifically, it 
provides unified monitoring for data centers, private Clouds 
and public Clouds such as Amazon WS, including service 
level and response time monitoring, visualization and 
reporting. 
Hyperic CloudStatus provides open source monitoring and 
management software for all types of web applications, 
whether hosted in the Cloud or on premise, including 
Amazon Web Services and Google App Engine. 
CloudStatus gives users real-time reports and weekly trends 
on infrastructure metrics.  
4. Autonomic Computing 
Inspired by the the autonomic nervous system, autonomic 
computing aims at designing and building self-managing 
systems and has emerged as a promising approach for 
addressing the challenges due to software complexity 
(Jeffrey & Kephart, 2001). An autonomic system is able to 
make decisions to respond to changes in operating 
condition at runtime using high-level policies that are 
typically provided by an expert. Such a system constantly 
monitors and  optimizes its operation and automatically 
adapts itself to changing conditions so that it continues to 
achieve its 
objectives. There are several important and valuable 
milestones to reach fully autonomic computing: first, 
automated functions will merely collect and aggregate 
information to support decisions by human users. Later, 
they will serve as advisors, suggesting possible courses of 
action for humans to consider. Self-management is the 
essence of autonomic computing and has been defined in 
terms of the following four aspects of self-management 
(Jeffrey & Kephart, 2001).   
 Self configuration: Autonomic systems will configure 
themselves automatically in accordance with high-level 
policies representing business-level objectives that, for 
example, specify what is desired and not how it is to be 
accomplished. When a component is introduced, it will 

incorporate itself seamlessly, and the rest of the system will 
adapt to its presence. 
• Self optimization: Autonomic systems will continually 

seek ways to improve their operation, identifying and 
seizing opportunities to make themselves more 
efficient in performance and/or cost. Autonomic 
systems will monitor, experiment with, and tune their 
own parameters and will learn to make appropriate 
choices about keeping functions or outsourcing them. 

• Self healing: Autonomic computing systems will detect, 
diagnose, and repair localized problems resulting from 
bugs or failures in software and hardware. 

• Self protection: Autonomic systems will be self-protecting 
in two senses. They will defend the system as a whole 
against large-scale, correlated problems arising from 
malicious attacks or cascading failures that remain 
uncorrected by selfhealing measures. They also will 
anticipate problems based on early reports from sensors 
and take steps to avoid or mitigate them. Figure 4 
shows one basic structure of an autonomic element as 
proposed by IBM. It consists of autonomic manager 
which monitors, analyzes, plans and executes based on 
collected knowledge, and external environments 
including human users and managed elements. The 
managed element could be hardware resources such as 
CPU, memory and storage, software resources such as 
a database, a directory service or a system, or an 
application. The autonomic manager monitors the 
managed elements and its external environment 
including changing users  requirements, and analyzes 
them, computes a new plan reflecting changing 
conditions and executes this plan. 

 

 
Figure 4. One basic structure of an autonomic element. 

Elements interact with other elements and external 
environments through autonomic manager. 

 
5.  Scheduling, Metascheduling, and Resource 
Provisioning 
In the last few decades a lot of effort has been devoted to 
the research of job scheduling, especially in centers with 
High Performance Computing (HPC) facilities. The general 
scheduling problem consists of, given a set of jobs and 
requirements, a set of resources, and the system status, 
deciding which jobs to start executing and in which 
resources. In the literature there are many job scheduling 
policies, such as the FCFS approach and its variants 
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(Schwiegelshohn & Yahyapour,  Feitelson & Ruddph, ). 
Other policies use estimated application information (for 
example the execution time) which make no assumptions 
such as Smallest Job First (SJF) (Majumdar, Eager, & Bunt, 
), Largest Job First (LJF) (Zhu & Ahuja, ), Smallest 
Cumulative Demand First (SCDF) (Leutenegger & Vernon, 
) or Backfilling (Mu’alem & Feitelson, ), which is one of 
the most used in HPC systems. In Grid computing, 
scheduling techniques have evolved to incorporate other 
factors, such as the heterogeneity of resources or 
geographical distribution. The software component 
responsible for scheduling tasks in Grids is usually called 
meta-scheduler or Grid resource broker. The main actions 
that are performed by a Grid resource broker are: resource 
discovery and monitoring, resource selection, job 
execution, handling and monitoring. However, it may be 
also responsible for other additional tasks such as security 
mechanisms, accounting, quality of service (QoS) ensuring, 
advance reservations, negotiation with other scheduling 
entities, policy enforcement, migration, etc. A taxonomy 
and survey of Grid brokering systems can be found in 
(Krauter, Buyya, & Maheswaran, ). Some of their most 
common characteristics are discussed as follows: • They 
can involve different scheduling layers through several 
software components between the Grid resource broker and 
the resources where the application will run. Thus, the 
information and control available at the resource broker 
level is far less than that available at a cluster scheduling 
level. 
• A Grid resource broker usually does not have ownership 
or control over the resources. Moreover, the cluster 
scheduling systems may have their own local policies that 
can conflict with the Grid scheduling strategy. • There are 
conflicting performance goals between the users and the 
resource owners. 
While the users focus on optimizing the performance of a 
single application for a specified cost goal, the resource 
owners aim to obtain the best system throughput or 
minimize the response time. While in Grid computing the 
most important scheduling tasks are optimizing applications 
response time and resource utilization, in Cloud computing 
other factors become crucial such as economic 
considerations and efficient resource provisioning in terms 
of QoS guarantees, utilization and energy. As virtualized 
data centers and Clouds provide the abstraction of nearly-
unlimited computing resources through the elastic use of 
consolidated resources pools, the scheduling task shifts to 
scheduling resources (i.e. provisioning application requests 
with resources). The provisioning problem in question is 
how to dynamically allocate resources among VMs with the 
goal of optimizing a global utility function. Some examples 
are minimizing resource over-provisioning (waste of 
resources) and maximizing QoS (in order to prevent falling 
on under-provisioning that may led to providers  
revenue loss). 
6.  Interoperability in Grids and Clouds 
One goal of Grid computing is to provide uniform and 
consistent access to resources distributed in different data 
centers and institutions. This is because the majority of 
Grids are formed based on regional as opposed to local 
initiatives so interoperation is a key objective. Some 
examples are TeraGrid in US (Catlett, Beckman, Skow, & 
Foster, ), GridX1 in Canada (Agarwal et al., ), Naregi in 

Japan (Matsuoka et al.,) and EGEE in Europe (Berlich, 
Hardt, Kunze, Atkinson, & Fergusson, ). Interoperation is 
addressed at various architectural points such as the access 
portal, resource brokering function, and infrastructure  
standardization.  Some production Grid environments, such 
as HPC-Europa (Oleksiak et al., ), DEISA (Alessandrini & 
Niederberger, ) and PRACE, approach interoperability 
using a uniform access interface to application users. 
Software layers beneath the user interface then abstract the 
complexity of the underlying heterogeneous 
supercomputing infrastructures. One tool that takes this 
approach for Grid interoperation is meta-brokering (Kertesz 
& Kacsuk, ), illustrated in Fig. 5.. Meta-brokering supports 
the Grid interoperability from the viewpoint of the resource 
management and scheduling. Many projects explore this 
approach with varied emphases. Examples grouped loosely 
by primary technical foci, are reviewed below: 
 
• Infrastructure interoperability 
GridWay (Huedo, Montero, & Llorente, ), which is mainly 
based on Globus, supports multiple Grids using Grid 
gateways (Huedo, Montero, & Llorente, ) to access 
resources belonging to different domains. GridWay 
forwards local user requests to another domain when the 
current one is overloaded. Latin American Grid Meta-
brokering (Badia et al., ; Bobroff et al., ) , proposed and 
implemented a common set of protocols to enable 
interoperability among heterogeneous meta-schedulers 
organized in a peer-to-peer structure. The resource domain 
selection is based on an aggregated resource information 
model (Rodero, Guim, Corbalan, Fong, & Sadjadi, ) and 
jobs from home domain can be routed to peer domains for 
execution. 
• Resource Optimization in interoperated Grids 
Koala Grid Scheduler (Mohamed & Epema, ) is focused 
on data and processor co-allocation. To inter-connect 
different Grid domains as different Koala instances. Their 
policy is to use resources from a remote domain only if the 
local one is saturated. They use delegated matchmaking 
(Iosup, Epema, Tannenbaum, Farelle, & Livny, ) to obtain 
the matched resources from one of the peer Koala instances 
without routing the jobs to the peer domains.  
InterGrid (Assuncao, Buyya, & Venugopal, ) promotes 
interlinking different Grid systems through peering 
agreements based on economic approaches to enable inter-
grid resource sharing. This is an economic-based approach, 
where business application support is a primal goal, and this 
also supposed to establish sustainability. 
 
 

VI   CONCLUSIONS 
 
Grids and Clouds have many similarities in their 
architectures, technologies and techniques. Nowadays, it 
seems Cloud computing is taking more significance as a 
means to offer an elastic platform to access remote 
processing resources: this is 
backed up by the blooming market interest on new 
platforms, the number of new businesses that use and 
provide Cloud services and the interest of academia in this 
new paradigm. However, there are still multiple facets of 
Cloud computing that need to be addressed, such as vendor 
lock-in, security concerns, better monitoring systems, etc. 
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We believe that the technologies developed in Grid 
computing can be leverage to accelerate the maturity of the 
Cloud, and the new opportunities presented by the latter 
will in term address some of the shortcomings of the Grid. 
As this chapter tries to   convey, perhaps the area in which 
Clouds can gain the most from Grid technologies is in 
multi-site interoperability. This comes naturally from the 
fact that the main purpose of Grid systems is to enable 
remote sites under different  administration policies to 
establish efficient and orchestrated collaboration. This is 
arguably one of the weakest points in Clouds, which usually 
are services offered by single organizations that enforce 
their -often proprietary- protocols, leading for examples to 
the already identified problem of vendor lock-in. On the 
other hand, Grid computing, through the use of well defined 
standards, has achieved site interoperability as it can be 
seen by the multiple computing and data Grids used by 
projects in fields as particle physics, earth sciences, genetics 
and economic sciences. Another path worth diving into is 
the one exploring how the new paradigm of Cloud 
computing can benefit existing technologies and solutions 
proposed by the Grid community: the realization of utility 
computing, elastic provisioning of resources, or the 
homogenization of heterogeneous resources (in terms of 
hardware, operating systems and software libraries) through 
virtualization bring a new realm of possible uses for vast, 
underutilized computing resources. New consolidation 
techniques allow for studies on lower energy usage for data 
centers and diminished costs for users of computing 
resources. There is effectively a new range of applications 
that can be run on Clouds because of the improved isolation 
provided by virtualization techniques. Thus, existing 
software that was difficult to run on Grids due to hard 
dependencies on libraries and/or operating systems can now 
be executed on many more resources that have been 
provisioned complying with the required environment. 
Finally, there are some outstanding problems that need to 
be considered which prevent some users from switching to 
new Cloud technologies. These problems need to be tackled 
before we can fully take advantage of all the mentioned 
opportunities.  
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