
Employing Grid Computing Strategies in Cloud
Computing

Amit Batra#, Rajender Kumar*, Arvind Kumar#

#CSE Department,
H.C.T.M Kaithal India

* H.C.T.M Kaithal India

Abstract— The fields of Grid, Utility and Cloud Computing
have a set of common objectives in harnessing shared
resources to optimally meet a great variety of demands cost-
effectively and in a timely manner Since Grid Computing
started its technological journey about a decade earlier than
Cloud Computing, the Cloud can benefit from the technologies
and experience of the Grid in building an infrastructure for
distributed computing. Our comparison of Grid and Cloud
starts with their basic characteristics and interaction models
with clients, resource consumers and providers. Then the
similarities and differences in architectural layers and key
usage patterns are examined. This is followed by an in depth
look at the technologies and best practices that have
applicability from Grid to Cloud computing, including
scheduling, service orientation, security, data management,
monitoring, interoperability, simulation and autonomic
support. Finally, we offer insights on how these
techniques will help solve the current challenges faced by
Cloud computing.
Keywords— Cloud, Grid, Web Service Resource Framework
(WSRF), Largest Job First (LJF) , Smallest Cumulative
Demand First (SCDF).

I. INTRODUCTION
Additional progress in high speed, low latency
interconnects, has allowed building large-scale local
clusters for distributed computing, and the extension to
wide-area collaborating clusters in the Grid. Now, the
recent availability of hardware support for platform
virtualization on commodity machines provides a key
enabler for Cloud based computing. Software models move
in lockstep to match advances in hard-ware. There is a
considerable practical experience implementing distributed
computing solutions and in supporting parallel
programming models on clusters. These models now work
to leverage the concurrency provided by multi-core and
multi-systems. Additionally, there are two other areas of
software evolution that are moving quickly to support the
Cloud paradigm: one is the improving maturity and
capability of software to manage virtual machines, and the
other is the migration from a monolithic approach in
constructing software solutions to a service approach in
which complex processes are composed of loosely coupled
components. These latest steps in the evolution of hardware
and software models have led to Grid and Cloud
Computing as paradigms that reduce the cost of software
solutions. Since Grid Computing started its technological
journey about a decade earlier than Cloud Computing, are
there lessons to learn and technologies to leverage from
Grid to Cloud? In this chapter, we would like to explore the
experiences learnt in Grid and the role of Grid technologies
for Cloud computing.

II BASICS OF GRID AND CLOUD COMPUTING
1. Basics of Grid Computing
Grid Computing harnesses distributed resources from
various institutions (resource providers), to meet the
demands of clients consuming them. Resources from
different providers are likely to be diverse and
heterogeneous in their functions (computing, storage,
software, etc.), hardware architectures (Intel x86, IBM
PowerPC, etc.), and usage policies set by owning
institutions. Developed under the umbrella of Grid
Computing, information services, name services, and
resource brokering services are important technologies
responsible for the aggregation of resource information and
availability, selection of resources to meet the clients’
specific requirements and the quality of services criteria
while adhering to the resource usage policies. Figure 1
shows an exemplary relationship of resource providers and
consumers for a collaborative Grid computing scenario.
Clients or users submit their requests for application
execution along with resource requirements from their
home domains. A Resource broker selects a domain with
appropriate resources to acquire from and to execute the
application or route the application to domain for execution
with results and status returning to the home domain.

Figure 1. Grid collaborating domains

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2246

2. Basics of Cloud Computing
IDC defined two specific aspects of Clouds: Cloud Services
and Cloud Computing. Cloud Services are “consumer and
business products, services and solutions that are delivered
and consumed in real-time over the Internet” while Cloud
Computing is “an emerging IT development, deployment
and delivery model, enabling real-time delivery of products,
services and solutions over the Internet (i.e., enabling Cloud
services)”.
In this paper, we will focus the computing infrastructure
and platform aspects of the Cloud. Amazon’s Elastic
Compute Cloud popularized the Cloud computing model by
providing an on-demand provisioning of virtualized
computational resources as metered services to clients or
users. While not restricted, most of the clients are
individual users that acquire necessary resources for their
own usage through EC2’s APIs without cross organization
agreements or contracts. Figure 2 illustrates possible usage
models from clients C1 and C2 for resources/services of
Cloud providers. As Cloud models evolve, many are
developing the hybrid Cloud model in which enterprise
resource brokers may acquire additional needed resources
from external Cloud providers to meet the demands of
submitted enterprise workloads (E1) and client work
requests (E2). Moreover, the enterprise resource domain
and Cloud providers may all belong to one corporation and
thus form a private Cloud model.

Figure 2 Cloud Usage Models

III. INTERACTION MODELS OF GRID AND CLOUD

COMPUTING
One of the most scalable interaction models of Grid
domains is peer-to-peer, where most of the Grid
participating organizations are both consumers and
providers. In practice, there are usually agreements of
resource sharing among the peers.

Furthermore, clients of consumer organizations in Grids use
heterogeneous resources from more than one resource
provider belonging to the same Virtual Organization (VO)
to execute their applications. It is important for
participating resource providers and consumers to have
common information models, interaction protocols,
application execution states, etc. The organization of Open
Grid Forum
(OGF) has the goal of establishing relevant and necessary
standards for Grid computing. Some proposed standards
include Job Submission Description Language (JSDL),
Basic Execution Service (BES) and others. Currently, most
of the Cloud providers offer their own proprietary service
protocols and information formats. As Cloud computing
becomes mature and widely adopted, clients and consumer
organizations would likely interact with more than one
provider for various reasons, including finding the most
cost effective solutions or acquiring a variety of services
from different providers (e.g., compute providers or data
providers). Cloud consumers will likely demand common
protocols and standardized information formats for ease of
federated usage and interoperability. The Open
Virtualization format (OVF) of the Distributed
Management Task Force (DMTF) is an exemplary proposal
in this direction. Modeled after similar formations in the
Grid community, OGF officially launched a workgroup,
named the Open Cloud Computing Interface Working
Group (OCCI-WG) to develop the necessary common APIs
for the lifecycle management of Cloud infrastructure
services. More standardization activities related to Cloud
can be found in the wiki of Cloud-Standards.org.

1. Distributed Computing in the Grid and Cloud
The Grid encompasses two areas of distributed system
activity. One is operational with an objective of
administrating and managing an interoperable collection of
distributed compute resource clusters on which to execute
client jobs, typically scientific/ HPC applications. The
procedures and protocols required to support clients from
complex services built on distributed components that
handle job submission,security, machine provisioning, and
data staging. The Cloud has similar operational
requirements for supporting complex services to provide
clients with services on different levels of support such
application, platform and infrastructure. The Grid also
represents as a coherent entity a collection of compute
resources that may be under different administrative
domains, such as universities, but inter-operate
transparently to form virtual organizations. Although
interoperability is not a near term priority, there is a
precedent for commercial Clouds to move in this direction
similarly to how utilities such as power or communication
contract with their competitors to provide overflow
capacity. The second aspect of distributed computing in the
Grid is that job themselves are distributed, typically running
on tightly coupled nodes within a cluster and leveraging
middleware services such as MPICH. Jobs running in the
Grid are not typically interactive, and some may be part of
more complex services such as e-science workflows.
Workloads in Clouds usually consist of more loosely
coupled distributed jobs such as map/reduce, and HPC jobs
written to minimize internode communication and leverage
concurrency provided by large multi-core nodes. Service

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2247

instances that form components of a larger business process
workflow are likely to be deployed in the Cloud. These
workload aspects of jobs running in the Cloud or Grid have
implications for structuring the services that administer and
manage the quality of their execution.
2. Layered Models and Usage patterns in Grid
and Cloud
There are many similarities in Grid and Cloud computing
systems. We compare the approaches by differentiating
three layers of abstraction in Grid: Infrastructure, Platform
and Application. Then we map these three layers to the
Cloud services of IaaS, PaaS, and SaaS. An example of the
relations among layers can be seen in Fig. 3.
2.1 Infrastructure
This is the layer in which Clouds share most characteristics
with the original purpose of Grid middleware. Some
examples are Eucalyptus (Nurmi et al., 2009), OpenNebula,
or Amazon EC2. In these systems users can provision
execution environments in the form of virtual machines
through interfaces such as APIs or command line tools. The
act of defining an execution environment and sending a
request to the final resource has many similarities with
scheduling a job in the Grid. The main steps, shared by all
of the cited Cloud environments are discussed below. We
use Globus as the reference Grid technology. The user
needs to be authorized to use the system. In Grid systems
this is managed through the Community Authorization
System (CAS) or by contacting a Certificate Authority that
is trusted by the target institution, which issues a valid
certificate. Clouds usually offer web forms to allow the
registration of new users, and have additional web
applications to maintain databases of customers and
generate credentials, such as the case of Eucalyptus or
Amazon. Once the user has a means of authenticating he
needs to contact a gateway that can validate him and
process his request. Different mechanisms are employed to
carry users’ requests, but Web Services are the most
common of them. Users either write a custom program that
consumes the WS offered by providers, or use available
tools. Examples include the Amazon API tools for Amazon
EC2, the euca2ools for Eucalyptus or the OpenNebula
command line interface. Similarly, Globus offers a set of

Figure. 3. Grid and Cloud Layers

console-based scripts that facilitate communication with the
Grid. • As part of the request for resource usage, users need
to specify the action or task to be executed on the
destination resources. Several formats are available for this
purpose. Globus supports a Resource Specification
Language (RSL) and a Job Submission Description
Language (JSDL) that can define what process is to be run
on the target machine, as well as additional constraints that
can be used by a matchmaking component to restrict the
class of resources to be considered, based on machine
architecture, processor speed, amount of memory, etc.
Alternatively, Clouds require different attributes such as the
size of the execution environment or the virtual machine
image to be used. After the job execution or the
environment creation requests are received, there is a
match-making and scheduling phase involved. The GRAM
component from Globus is specially flexible in this regard,
and multiple adapters allow different treatments for jobs:
for example, the simplest job manager just performs a fork
call to spawn a new process on the target machine. More
advanced and widely used adapters transfer job execution
responsibility to a local resource manager such as Condor,
LoadLeveler or Sun Grid Engine. These systems are able of
multiplexing jobs that are sent to a site into multiple
resources. Cloud systems have simpler job management
strategies, since the type of jobs are homogeneous and don’t
need to be adapted to a variety of resources such as in the
case of the Grid. For example, Eucalyptus uses a Round
Robin scheduling technique to alternate among machines.
OpenNebula implements a Rank Scheduling Policy to
choose the most adequate resource for a request, and
supports more advance features such as advance
reservations through Haizea (Sotomayor, Keahey, & Foster,
2008). One of the common phases involved in job
submission is transferring the necessary data to and from
the execution machine. The first of them, usually called
stage-in, involves retrieving the input data for the process
from a remote destination, such a GridFTP server. When
the amount of data is large, a mapping service such as a
Replica Location Service (RLS) can be used to translate a
logical file name to a location. The second part of the
process, stage-out, consists in either transferring the output
data to the user’s machine or to place it in a repository,
possibly using the RLS. In the case of Cloud computing, the
most important data that has to be transferred is the
definition of an execution environment, usually in terms of
Virtual Machine images. Users upload the data describing
the operating system and packages needed to instantiate the
VM and later reference it to perform operations such as
booting a new machine. There is no standard method for
transferring data in Cloud systems, but it is worth noting
Amazon’s object storage solution, the Simple Storage
Service (S3), which allows users to move entities from 1
byte to 5 GB in size. Finally, Grid and Cloud systems need
to offer users a method to monitor their jobs, as well as
their resource usage. This facility can also be used by site
administrators to implement usage accounting in order to
track resource utilization and enforce user quotas. In the
context of Globus, there are two modules that can be used
for this purpose, the first is GRAM itself, which allows user
to query previously submitted jobs’ status. The second
method of acquiring information about the Grid’s resources
is provided by the Monitoring and Discovery Service

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2248

(MDS), which is in charge of aggregating resources’ data
and making it available to be queried. High-level
monitoring tools have been developed on top of existing
Cloud management systems such as Amazon Cloud Watch.
2.2 Platform
This layer is built on top of the physical infrastructure and
offers a higher level of abstraction to users. The interface
provided by a PaaS solution allows developers to build
additional services without being exposed to the underlying
physical or virtual resources. These facts enable additional
features to be implemented as part of the model, such as
presenting seemingly infinite resources to the user or
allowing
elastic behavior on demand. Examples of Cloud solutions
that present these features are Google App Engine,
Salesforce’s force.com or Microsoft Azure. Several
solutions that can be compared to the mentioned PaaS
offerings exist in the Grid, even though this exact model
cannot be exactly replicated. We define Platform level
solutions as those containing the following two aspects:
2.2.1 Abstraction from Physical Resources
The Infrastructure layer provides users with direct access to

the underlying infrastructure. While this is required for
the lower levels of resource interaction, in the Platform
level a user should be isolated from them. This allows
developers to create new software that is not susceptible
to the number of provisioned machines or their network
configuration, for example.

2.2.2 Programming API to Support New Services
The Platform layer allows developers to build new software

that takes advantage of the available resources. The
choice of API directly influences the programs that can
be built on the Cloud, therefore each PaaS solution is
usually designed with a type of application in mind.
With these characteristics Grid systems allow developers
to produce new software that take advantage of the
shared resources in order to compare them with PaaS
solutions.

IV APPLICATIONS

There is no clear distinctions between applications
developed on Grids and those that use Clouds to perform
execution and storage. The choice of platform should not
influence the final result, since the computations delegated
to the underlying systems can take different shapes to
accommodate to the available APIs and resources. On the
other hand, it is undeniable that the vast majority of Grid
applications fall in the realm of scientific software, while
software running in Clouds has leaned towards commercial
workloads. Here we try to identify some possible causes for
the different levels of adoption of these technologies for the
development of applications:
• Lack of business opportunities in Grids. Usually Grid

middleware is installed only in hardware intended for
scientific usage. This phenomenon has not successfully

 produced business opportunities that could be exploited
by industry. Conversely, Clouds are usually backed up
by industry which have had better ways to monetize
their investments.

• Complexity of Grid tools. Perhaps due to the goal of
providing a standardized, one-size-fits-all solution,
Grid middleware is perceived by many as complex and

 difficult to install and manage. On the other hand,
Cloud infrastructures have usually been developed by
providers to fit their organization’s needs and with a
concrete purpose in mind, making them easier to use
and solution oriented.

• Affinity with target software. Most Grid software is
developed with scientific applications in mind, which is
not true for the majority of Cloud systems. Scientific
programs need to get the most performance from
execution resourcesand many of them cannot be run on
Clouds efficiently, for example because of
virtualization overhead. Clouds are more targeted to
web applications. These different affinities to distinct
paradigms make both solutions specially effective for
their target applications.

V TECHNIQUES

Here we discuss the impact of techniques used in Grid
computing that can be applied in Clouds. From the time the
concept of Grid was introduced, a variety of problems had
to be solved in order to enable its wide adoption. Some
examples of these are user interfacing , data transfer,
resource monitoring or security . These basic techniques
for the enablement of Grids were designed to fulfill its main
goals, namely, to allow the sharing of heterogeneous
resources among individuals belonging to remote
administrative domains. These goals determine the areas of
application of the described techniques in Clouds, therefore
we will find the most valuable set of improvements to be in
the field of Cloud interoperability.

1. Service Orientation and Web Services
The Cloud is both a provider of services (e.g. IaaS, PaaS,
and SaaS) and a place to host services on behalf of clients.
To implement the former operational aspects while
maintaining flexibility, Cloud administrative functions
should be constructed from software components. The Grid
faced similar challenges in building a distributed
infrastructure to support and evolve its administrative
functions such as security, job submission, and creation of
Virtual Organizations. The architectural principle adopted
by the Grid is Service Orientation (SO) with software
components connected by Web Services (WS). This
section summarizes contributions of the Open Grid Forum
(OGF) to SO in distributed computing and and how they
apply to the Cloud. SO as an architecture, and Web
Services as a mechanism of inter-component
communication are explored here in the context of
similarities between Grid and Cloud requirements.
Grid designers realized the advantage of the loosely-
coupled client and service model being appropriately
deployed in the distributed computing environments. The
original Grid approach to SO was Open Grid Services
Infrastructure (OGSI). OGSI was built on top of the
emerging Web Services standards for expressing interfaces
between components in a language neutral way based on
XML schemas.While WS is an interface, OGSI attempted
to make it object oriented by adding required methods.
Subsequently, the Grid community worked within the WS
standards to extend WS specification based on experience
using a SOA. This lead to the introduction of Open Grid
Services Architecture (OGSA), implemented in version 3 of

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2249

the Globus toolkit. OGSA contains key extensions to the
WS standard which are now described. In Grid and Cloud
the most typical service components such as provisioning
an OS image, starting a virtual machine, or dispatching a
job are long running. A service composition of these
components requires an asynchronous programming model.
A consumer service component invokes a WS provider and
is immediately acknowledged so the caller does not hold his
process open on a communication link. The provider
component asynchronously updates the consumer as the
state changes. Grid architects recognized the importance of
supporting the asynchronous model and integrated this
approach into Web Services through the WS-Addressing
and WS-Notify extensions. WS-Addressing specifies how to
reference not just service endpoints, but objects within the
service endpoint. Notification is based on WS-Addressing
which specifies the component to be notified on a state
change. Related to the long lived service operation and
asynchronous communication model is the requirement to
maintain and share state information. There are many ways
to achieve statefulness, none simple, especially when
multiple services can update the same state object. In
principle, a WS interface is stateless although of course
there are many ways to build applications on top of WS that
pass state through the operation messages. The challenge is
to integrate the WS specification with a standard for
statefulness that does not disturb the stateless intent of WS
interface model. The OGF achieved this goal, developing
the Web Service Resource Framework (WSRF). WSRF
allows factory methods in the WS implementation to create
objects, which are referenced remotely using the WS-
Addressing standard. Persistent resource properties are
exposed to coupled services through XML. Introducing
state potentially adds enormous complexity to a distributed
system, and the distribution of stateful data to multiple
service components has the potential for data coherence
problems which would require distributed locking
mechanisms. The approach introduced by the Grid passes
WS endpoints to the resources so that synchronized access
is provided by the service implementation. One path to
leveraging Grid technology experiences in the Cloud is to
consider building operation support services with a SO. The
component services interconnect using the suite of WS
standards. The logic of composing the services is built with
modern business process design tools which produce a
workflow. The design workflow is exported in the form
such as the Business Process Execution Language (BPEL)
and executed by a workflow engine. This implementation
path of using BPEL with WSRF to build a SOA has been
demonstrated in an e-Science context (Ezenwoye &
Sadjadi, 2010; Ezenwoye, Sadjadi, Carey, & Robinson,
2007). There is already some experience using WS and
WSRF in the Cloud domain. The Nimbus project uses the
WS and WSRF model as an interface for clients to access
its Cloud workspaces.
2. Data Management
In Grid computing, data-intensive applications such as the
scientific software in domains like high energy physics,
bio-informatics, astronomy or earth sciences involve large
amounts of data. The Globus Toolkit provides multiple data
management solutions including GridFTP, the Global
Access to Secondary Storage (GASS), the Reliable File
Transfer (RFT), the Replica Location Service (RLS) and a

higher-level Data Replication Service (DRS) based on RFT
and RLS. Specifically, GASS is a lightweight data access
mechanism for remote storage systems. It enables pre-
staging and post-staging of files and is integrated into the
Globus Resource Access and Monitoring (GRAM) to stage
in executables and input data and if necessary, stage out the
output data and logs.
In the current state of Cloud computing, storage is usually
close to computation and therefore data management is
simpler than in Grids, where the pool of execution and
storage resources is considerably larger and therefore
efficient and scalable methods are required for placement of
jobs and data location and transfer. Still, there is the need to
take data access into consideration to provide better
application performance.
An example of this is Hadoop, which schedules
computation close to data to reduce transfer delays. Same as
Grid computing, Clouds need to provide scalable and
efficient techniques for transferring data. For example, we
may need to move virtual machine images, which are used
to instantiate execution environments in Clouds, from users
to a repository and from the repository to hosting machines.
Techniques for improved transfer rates such as GridFTP
would result in lower times for sites that have high
bandwidth, since they can optimize data transfer by
parallelizing the sending streams. Also, catalog services
could be leveraged to improve distributed information
sharing among multiple participants such that the locating
of user data and data repositories is more efficient. The
standards developed from Grid computing practice can be
leveraged to improve interoperability of multiple Clouds.
Finally, better integration of data management with the
security infrastructure would enable groups of trusted users.
An application of this principle could be used in systems
such as Amazon EC2 where VM images are shared by
individuals with no assurances about their provenance.
3. Monitoring
Although some Cloud monitoring tools have already been
developed, they provide high level information and, in most
cases, the monitoring functionality is embedded in the
VMmanagement system following specific mechanisms
and models. The current challenge for Cloud monitoring
tools is providing information from the Clouds and
application/service requests with sufficient level of detail in
nearly real time in order to take effective decisions rather
than providing a simple and graphical representation of the
Cloud status. To do this, different Grid monitoring
technologies can be applied to Clouds, specially those of
them that are capable to provide monitoring data in
aggregate form due to the large scale and dynamic behavior
of Clouds. Several data centers that provide resources to
Cloud systems have adopted Ganglia as a monitoring tool.
However, virtualized environments have more specific
needs that have motivated Cloud computing technology
providers to develop their own monitoring system. Some of
them are summarized below:
Amazon CloudWatch is a web service that provides
monitoring for Amazon Web Services Cloud resources such
as Amazon EC2. It collects raw data from Amazon Web
Services and then processes the information into readable
metrics that are recorded for a period of two weeks. It
provides the users with visibility into resource utilization,

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2250

operational performance, and overall demand patterns -
including metrics such as CPU utilization, disk reads and
writes, and network traffic.
Windows Azure Diagnostic Monitor collects data in local
storage for every diagnostic type that is enabled and can
transfer the data it gathers to an Azure Storage account for
permanent storage. It can be scheduled to push the collected
data to storage at regular intervals or it can be requested an
on-demand transfer whenever this information is required.
The OpenNebula Information Manager (IM) is in charge
of monitoring the different nodes in a Cloud. It comes with
various sensors, each one responsible for different aspects
of the compute resource to be monitored (CPU, memory,
hostname). Also, there are sensors prepared to gather
information from different hypervisors. The monitoring
functionality of Aneka (Vecchiola, Chu, & Buyya, 2009)
is implemented by the core middleware, which provides a
wide set of services including also negotiation of the quality
of service, admission control, execution management,
accounting and billing. To help administrators to tune the
overall performance of the Cloud, the Management Studio
provides aggregated dynamic statistics.
Nimsoft Monitoring Solution (NMS), built on the Nimsoft
Unified Monitoring Architecture, delivers monitoring
functionality to any combination of virtualized data center,
on hosted or managed infrastructure, in the Cloud on IaaS
or PaaS or delivered as SaaS services. Specifically, it
provides unified monitoring for data centers, private Clouds
and public Clouds such as Amazon WS, including service
level and response time monitoring, visualization and
reporting.
Hyperic CloudStatus provides open source monitoring and
management software for all types of web applications,
whether hosted in the Cloud or on premise, including
Amazon Web Services and Google App Engine.
CloudStatus gives users real-time reports and weekly trends
on infrastructure metrics.
4. Autonomic Computing
Inspired by the the autonomic nervous system, autonomic
computing aims at designing and building self-managing
systems and has emerged as a promising approach for
addressing the challenges due to software complexity
(Jeffrey & Kephart, 2001). An autonomic system is able to
make decisions to respond to changes in operating
condition at runtime using high-level policies that are
typically provided by an expert. Such a system constantly
monitors and optimizes its operation and automatically
adapts itself to changing conditions so that it continues to
achieve its
objectives. There are several important and valuable
milestones to reach fully autonomic computing: first,
automated functions will merely collect and aggregate
information to support decisions by human users. Later,
they will serve as advisors, suggesting possible courses of
action for humans to consider. Self-management is the
essence of autonomic computing and has been defined in
terms of the following four aspects of self-management
(Jeffrey & Kephart, 2001).
 Self configuration: Autonomic systems will configure
themselves automatically in accordance with high-level
policies representing business-level objectives that, for
example, specify what is desired and not how it is to be
accomplished. When a component is introduced, it will

incorporate itself seamlessly, and the rest of the system will
adapt to its presence.
• Self optimization: Autonomic systems will continually

seek ways to improve their operation, identifying and
seizing opportunities to make themselves more
efficient in performance and/or cost. Autonomic
systems will monitor, experiment with, and tune their
own parameters and will learn to make appropriate
choices about keeping functions or outsourcing them.

• Self healing: Autonomic computing systems will detect,
diagnose, and repair localized problems resulting from
bugs or failures in software and hardware.

• Self protection: Autonomic systems will be self-protecting
in two senses. They will defend the system as a whole
against large-scale, correlated problems arising from
malicious attacks or cascading failures that remain
uncorrected by selfhealing measures. They also will
anticipate problems based on early reports from sensors
and take steps to avoid or mitigate them. Figure 4
shows one basic structure of an autonomic element as
proposed by IBM. It consists of autonomic manager
which monitors, analyzes, plans and executes based on
collected knowledge, and external environments
including human users and managed elements. The
managed element could be hardware resources such as
CPU, memory and storage, software resources such as
a database, a directory service or a system, or an
application. The autonomic manager monitors the
managed elements and its external environment
including changing users requirements, and analyzes
them, computes a new plan reflecting changing
conditions and executes this plan.

Figure 4. One basic structure of an autonomic element.

Elements interact with other elements and external
environments through autonomic manager.

5. Scheduling, Metascheduling, and Resource
Provisioning
In the last few decades a lot of effort has been devoted to
the research of job scheduling, especially in centers with
High Performance Computing (HPC) facilities. The general
scheduling problem consists of, given a set of jobs and
requirements, a set of resources, and the system status,
deciding which jobs to start executing and in which
resources. In the literature there are many job scheduling
policies, such as the FCFS approach and its variants

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2251

(Schwiegelshohn & Yahyapour, Feitelson & Ruddph,).
Other policies use estimated application information (for
example the execution time) which make no assumptions
such as Smallest Job First (SJF) (Majumdar, Eager, & Bunt,
), Largest Job First (LJF) (Zhu & Ahuja,), Smallest
Cumulative Demand First (SCDF) (Leutenegger & Vernon,
) or Backfilling (Mu’alem & Feitelson,), which is one of
the most used in HPC systems. In Grid computing,
scheduling techniques have evolved to incorporate other
factors, such as the heterogeneity of resources or
geographical distribution. The software component
responsible for scheduling tasks in Grids is usually called
meta-scheduler or Grid resource broker. The main actions
that are performed by a Grid resource broker are: resource
discovery and monitoring, resource selection, job
execution, handling and monitoring. However, it may be
also responsible for other additional tasks such as security
mechanisms, accounting, quality of service (QoS) ensuring,
advance reservations, negotiation with other scheduling
entities, policy enforcement, migration, etc. A taxonomy
and survey of Grid brokering systems can be found in
(Krauter, Buyya, & Maheswaran,). Some of their most
common characteristics are discussed as follows: • They
can involve different scheduling layers through several
software components between the Grid resource broker and
the resources where the application will run. Thus, the
information and control available at the resource broker
level is far less than that available at a cluster scheduling
level.
• A Grid resource broker usually does not have ownership
or control over the resources. Moreover, the cluster
scheduling systems may have their own local policies that
can conflict with the Grid scheduling strategy. • There are
conflicting performance goals between the users and the
resource owners.
While the users focus on optimizing the performance of a
single application for a specified cost goal, the resource
owners aim to obtain the best system throughput or
minimize the response time. While in Grid computing the
most important scheduling tasks are optimizing applications
response time and resource utilization, in Cloud computing
other factors become crucial such as economic
considerations and efficient resource provisioning in terms
of QoS guarantees, utilization and energy. As virtualized
data centers and Clouds provide the abstraction of nearly-
unlimited computing resources through the elastic use of
consolidated resources pools, the scheduling task shifts to
scheduling resources (i.e. provisioning application requests
with resources). The provisioning problem in question is
how to dynamically allocate resources among VMs with the
goal of optimizing a global utility function. Some examples
are minimizing resource over-provisioning (waste of
resources) and maximizing QoS (in order to prevent falling
on under-provisioning that may led to providers
revenue loss).
6. Interoperability in Grids and Clouds
One goal of Grid computing is to provide uniform and
consistent access to resources distributed in different data
centers and institutions. This is because the majority of
Grids are formed based on regional as opposed to local
initiatives so interoperation is a key objective. Some
examples are TeraGrid in US (Catlett, Beckman, Skow, &
Foster,), GridX1 in Canada (Agarwal et al.,), Naregi in

Japan (Matsuoka et al.,) and EGEE in Europe (Berlich,
Hardt, Kunze, Atkinson, & Fergusson,). Interoperation is
addressed at various architectural points such as the access
portal, resource brokering function, and infrastructure
standardization. Some production Grid environments, such
as HPC-Europa (Oleksiak et al.,), DEISA (Alessandrini &
Niederberger,) and PRACE, approach interoperability
using a uniform access interface to application users.
Software layers beneath the user interface then abstract the
complexity of the underlying heterogeneous
supercomputing infrastructures. One tool that takes this
approach for Grid interoperation is meta-brokering (Kertesz
& Kacsuk,), illustrated in Fig. 5.. Meta-brokering supports
the Grid interoperability from the viewpoint of the resource
management and scheduling. Many projects explore this
approach with varied emphases. Examples grouped loosely
by primary technical foci, are reviewed below:

• Infrastructure interoperability
GridWay (Huedo, Montero, & Llorente,), which is mainly
based on Globus, supports multiple Grids using Grid
gateways (Huedo, Montero, & Llorente,) to access
resources belonging to different domains. GridWay
forwards local user requests to another domain when the
current one is overloaded. Latin American Grid Meta-
brokering (Badia et al., ; Bobroff et al.,) , proposed and
implemented a common set of protocols to enable
interoperability among heterogeneous meta-schedulers
organized in a peer-to-peer structure. The resource domain
selection is based on an aggregated resource information
model (Rodero, Guim, Corbalan, Fong, & Sadjadi,) and
jobs from home domain can be routed to peer domains for
execution.
• Resource Optimization in interoperated Grids
Koala Grid Scheduler (Mohamed & Epema,) is focused
on data and processor co-allocation. To inter-connect
different Grid domains as different Koala instances. Their
policy is to use resources from a remote domain only if the
local one is saturated. They use delegated matchmaking
(Iosup, Epema, Tannenbaum, Farelle, & Livny,) to obtain
the matched resources from one of the peer Koala instances
without routing the jobs to the peer domains.
InterGrid (Assuncao, Buyya, & Venugopal,) promotes
interlinking different Grid systems through peering
agreements based on economic approaches to enable inter-
grid resource sharing. This is an economic-based approach,
where business application support is a primal goal, and this
also supposed to establish sustainability.

VI CONCLUSIONS

Grids and Clouds have many similarities in their
architectures, technologies and techniques. Nowadays, it
seems Cloud computing is taking more significance as a
means to offer an elastic platform to access remote
processing resources: this is
backed up by the blooming market interest on new
platforms, the number of new businesses that use and
provide Cloud services and the interest of academia in this
new paradigm. However, there are still multiple facets of
Cloud computing that need to be addressed, such as vendor
lock-in, security concerns, better monitoring systems, etc.

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2252

We believe that the technologies developed in Grid
computing can be leverage to accelerate the maturity of the
Cloud, and the new opportunities presented by the latter
will in term address some of the shortcomings of the Grid.
As this chapter tries to convey, perhaps the area in which
Clouds can gain the most from Grid technologies is in
multi-site interoperability. This comes naturally from the
fact that the main purpose of Grid systems is to enable
remote sites under different administration policies to
establish efficient and orchestrated collaboration. This is
arguably one of the weakest points in Clouds, which usually
are services offered by single organizations that enforce
their -often proprietary- protocols, leading for examples to
the already identified problem of vendor lock-in. On the
other hand, Grid computing, through the use of well defined
standards, has achieved site interoperability as it can be
seen by the multiple computing and data Grids used by
projects in fields as particle physics, earth sciences, genetics
and economic sciences. Another path worth diving into is
the one exploring how the new paradigm of Cloud
computing can benefit existing technologies and solutions
proposed by the Grid community: the realization of utility
computing, elastic provisioning of resources, or the
homogenization of heterogeneous resources (in terms of
hardware, operating systems and software libraries) through
virtualization bring a new realm of possible uses for vast,
underutilized computing resources. New consolidation
techniques allow for studies on lower energy usage for data
centers and diminished costs for users of computing
resources. There is effectively a new range of applications
that can be run on Clouds because of the improved isolation
provided by virtualization techniques. Thus, existing
software that was difficult to run on Grids due to hard
dependencies on libraries and/or operating systems can now
be executed on many more resources that have been
provisioned complying with the required environment.
Finally, there are some outstanding problems that need to
be considered which prevent some users from switching to
new Cloud technologies. These problems need to be tackled
before we can fully take advantage of all the mentioned
opportunities.

ACKNOWLEDGMENT
We would like to express our gratitude to all those who
gave us the possibility to complete this paper. Furthermore
we would like to thank International Journal of Computer
Science and Information Technology for giving this this
esteemed opportunity for publishing this paper. We would
also like to thank Director, H.C.T.M, Kaithal, as well as
Head of Department(CSE), H.C.T.M., Kaithal for their
collaborat-ion and helping us to make resources availbility.

REFERENCES

[1] Anjomshoaa, A., Drescher, M., et al. (2005). Job submission
description language (JSDL) specification version 1.0, GFD-R.056
(Tech. Rep., Open Grid Forum (OGF)).
[2] Antonioletti, M., Krause, A., & Paton, N. W. (2005). An
outline of the global grid forum data access and integration service
specifications. Data Management in Grids LNCS, 3836, 71–84.
[3]Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalandar,
M., Krishnakumar, S., et al. (2001). Oceano-sla based
management of a computing utility. Proceeding of the 7th
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2001), Seattle, WA.
[4] Armbrust, M., Fox, A., & Griffith, R., et al. (2009). Above the
clouds: A berkeley view of cloud computing (CoRR UCB/EECS-
2009-28, EECS Department, University of California, Berkeley).
[5] Assuncao,M. D., Buyya, R., & Venugopal, S. (2008).
InterGrid: A case for internetworking Islands of grids.
Concurrency and Computation: Practice and Experience, 20,
997–1024.
[6]Badia, R., et al. (2007). High performance computing and grids
in action, Chap. Innovative Grid Technologies Applied to
Bioinformatics and Hurricane Mitigation, IOS Press, Amsterdam,
436–462.
[7] Badia, R. M., Labarta, J., Sirvent, R., Pérez, J. M., Cela, J. M.,
& Grima, R. (2003). Programming grid applications with grid
superscalar. Journal of Grid Computing, 1, 2003.
[8] Balaton, Z., & Gombas, G. (2003). Resource and job
monitoring in the grid. Euro-Par 2003 Parallel Processing,
Volume LNCS 2790, Klagenfurt, Austria, 404–411.
[9] Balis, B., Bubak, M., Funika, W., Wismüller, R., Radecki, M.,
Szepieniec, T., et al. (2004). Performance evaluation and
monitoring of interactive grid applications. Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Volume
LNCS 3241 345–352.

Amit Batra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2246 - 2253

2253

